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1. Introduction 
In 1961 Kelly [7] introduced the concept of 

bitopological spaces as an extension of topological 

spaces. A bitopological space (X, τ1, τ2) is a 

nonempty set X equipped with two topologies τ1 and 

τ2 [7] 

The notion of ideal in topological spaces was 

studied by Kuratowski [8] and Vaidyanathaswamy 

[13]. Applications to various fields were further 

investigated by Jankovic and Hamlett [6]; Dontchev 

[2]; Mukherjee [9]; Arenas [1]; Navaneethakrishnan 

[11]; Nasef and Mahmoud [10], etc.  

The purpose of this paper is to introduce and 

study the notion of connectedness in ideal 

bitopological spaces. We study the notions of pairwise 

*-connected ideal bitopological spaces, pairwise         

*-separated sets, pairwise *s-connected sets and 

pairwise *-connected sets in ideal bitopological spaces. 

  

2. Preliminaries 

An ideal I on a topological space (X, τ) is a 

nonempty collection of subsets of X which satisfies 

i. A  ∈ I and B  A  B  I and  

ii. A ∈ I and B ∈ I  A  B  I 

An ideal topological space is a topological 

space (X, τ) with an ideal I on X, and is denoted by 

(X, τ, I). Given an ideal topological space (X, τ, I) 

and If   𝒫 (X) is the set of all subsets of X, a set 

operator, 

 (.)*:𝒫 (X)  𝒫 (X) is called the local mapping [7] of 

A with respect to τ and I and is defined as follows: 

For A   X  A∗(τ, I) = {xXU  A  I,  U τ, 

where xU}.  

A Kuratowski closure operator Cl* (.) for a 

topology τ* (τ, I), called the *-topology, finer than τ, 

is defined by Cl*(A) = A  A* (τ, I) [6]. Without 

ambiguity, we write A* for A* (τ, I) and τ* for τ*    

(τ, I). For any ideal space (X, τ, I), the collection         

{V\J: V  τ and J  I} is a basis for τ*.  

 

Definition 2.1. [3] An ideal topological space (X, τ, 

I) 

is called *-connected [3] if X cannot be written as the 

disjoint union of a nonempty open set and a nonempty 

*-open set. 

          Recall that [6] if (X, τ, I) is an ideal topological 

space and A is a subset of X, then (A, 𝛕𝑨 I A), where 

𝛕𝑨 is the relative topology on A and I A = {A  J: J  

I} is an ideal topological space  

 

Definition 2.2. [3] A subset A of an ideal topological 

space (X, τ, I) is called *-connected if (A, 𝛕𝑨, I A) is 

 *-connected. 

 

Lemma 2.1. [6] Let (X, τ, I) be an ideal topological 

space and B  A  X. Then, B* (𝛕𝑨, I A) =  

B* ( τ, I)  A. 

 

Lemma  2.2. [4] Let (X, τ, I) be an ideal topological 

space and B  A  X. Then Cl𝐴
∗ (B) = Cl*(B)  A.                                                                                                                                             

 

Definition 2.3. [3] A subset A of an ideal space        

(X, τ, I) is said to be *-dense [2] if Cl*(A) = X. An 

ideal space (X, τ, I is said to be [3] *-hyperconnected 

if A is *-dense for every open subset A   of X. 

 

Lemma 2.3. [2] Let (X, τ, I) be an ideal topological 

space. For each V  τ *, 𝛕𝑉
∗  = (𝛕𝑉)*. 

  

Lemma 2.4. [3]  Let (X, τ, I) be a topological space, 

A  Y  X and Y  τ. Then A is *-open in Y is 

equivalent to A is *-open in X  

Proof:  A is *-open in Y  A is *-open in X.  Since Y 

 τ  τ* by Lemma 6, A is *-open in X. A is *-open in 

X  A is *-open in Y for if A is *-open in X. By 

Lemma 6, A = A  Y is *-open in Y.  

 

Definition 2.4. [7] A bitopological space (X, τ1, τ2, I 

is an ideal bitopological space where I is defined on a 

bitopological space (X, τ1, τ2,).  
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    Throughout the present paper, (X, τ1, τ2, I will 

denote a bitopological space with no assumed 

separation properties. For a subset A of a bitopological 

space    (X, τ1, τ2, I), Cl(A) and Int(A) will denote the 

closure and interior of A in (X,τ1,τ2, I, respectively.  

 

3. Connectedness in Ideal Bitopological 

Spaces 
Definition 3.1.  An ideal bitopological space            

(X, τ1, τ2, I) is called pairwise *-connected [3] if X 

cannot be written as the disjoint union of a nonempty 

𝛕𝒊 open set and a nonempty 𝛕𝑗
∗ -open set.                     

{i , j = 1, 2;  i ≠ j} 

 

Remark 3.1.  Since every 𝛕𝒊 open (𝛕𝒋 open) set is 𝛕𝑖
∗ 

(respectively 𝛕𝑗
∗ open). It follows that every pairwise       

*-connected ideal bitopological space is pairwise 

connected but the converse may not be true.  

 

Definition 3.2. [3]   An ideal bitopological space      

(X, τ1, τ2, I)   is said to be pairwise hyperconnected if 

A is 𝛕𝑗
∗ dense for every  𝛕𝒊 open set A ≠ ∅ of X 

 

Definition 3.3.  A subset A of an ideal bitopological 

space (X, τ1, τ2, I)  is called pairwise *-connected if 

(A, (𝛕𝟏)𝐴 , (𝛕𝟐)𝐴, IA) is pairwise *-connected. 

 

Definition 3.4. Nonempty subsets A, B of an ideal 

bitopological space (X, τ1, τ2 I) are called pairwise  

*-separated if 𝛕𝒊Cl*(A)  B = A  𝛕𝒋Cl(B) = . 

 

Theorem 3.1.  Let (X, τ1, τ2, I) be an ideal 

bitopological space. If A, B are pairwise *-separated 

sets of X and A  B  𝛕𝟏   𝛕𝟐 then A is 𝛕𝒊 open and 

B is 𝛕𝑗
∗-open. {i , j = 1 , 2;  i ≠ j} 

Proof:  Since A and B are pairwise *-separated in X, 

then B = (A  B)  (X - Cl*(A)). Since A B is 

biopen and 𝛕𝒋Cl*(A) is 𝛕𝑗
∗ -closed in X, B is  𝛕𝑗

∗-open 

in X. Similarly A = (A  B)  (X - Cl*(B)) and we 

obtain that A is 𝛕𝒊open in X. 

 

Theorem 3.2. Let (X, τ1, τ2 I) be an ideal 

bitopological space and A, B  Y  X. Then A and B 

are pairwise *-separated in Y if and only if  A, B are 

pairwise *-separated in X 

Proof:  It follows from Lemma 2 that 𝛕𝒊Cl*(A)  B = 

A  𝛕𝒋Cl(B) = .  

 

Theorem 3.3. If f: (X, τ1, τ2, I) → (Y, τ1, τ2) is a 

pairwise continuous onto mapping. Then if               

(X, τ1, τ2, I) is a pairwise *-connected ideal 

bitopological space (Y, τ1, τ2) is also pairwise 

connected. 

Proof: It is known that connectedness is preserved by 

continuous surjections. Hence every pairwise  

*-connected space is connected and the proof is 

obvious.  

 

Definition 3.5.  A subset A of an ideal bitopological 

space (X, τ1, τ2, I)  is called pairwise *s-connected if 

A is not the union of two pairwise *-separated sets in   

(X, τ1, τ2, I)   

 

Theorem 3.4. Let Y be a biopen subset of an ideal 

bitopological space (X, τ1, τ2, I) {i , j = 1 , 2;  i ≠ j} 

The following are equivalent: 

i. Y is pairwise *s-connected in (X, τ1, τ2, I)   

ii. Y is pairwise  *-connected in (X, τ1, τ2, I)   

Proof: : i)  ii) Let Y be pairwise *s-connected in    

(X, τ1, τ2, I) and suppose that Y is not pairwise           

*-connected in (X, τ1, τ2, I). There exist non empty 

disjoint 𝛕𝒊 open set A, in Y and 𝛕𝑗
∗ open set B in Y s.t 

Y =  A  B. Since Y is open in X, by Lemma 2.4       

A and B are 𝛕𝒊open and 𝛕𝑗
∗ open in X, respectively.   

Since A and B are disjoint, then 𝛕𝒊Cl*(A)  B = ∅ =            

A  𝛕𝒋Cl(B). This implies that A, B are pairwise        

*-separated sets in X. Thus, Y is not pairwise             

*s-connected in (X, τ1, τ2, I). Hence we arrive at a 

contradiction and Y is pairwise  

*-connected in (X, τ1 , τ2, I). 

ii)  i) Suppose Y is not pairwise *s-connected in    

(X, τ1, τ2, I). There exist two pairwise *-separated 

sets A, B  s.t Y = A  B. By Theorem 3.1, A and B are 

𝛕𝒊 open and 𝛕𝒋 -open in Y, respectively {i , j = 1 , 2;      

i ≠ j}. By Lemma 2.4, A and B are 𝛕𝒊 open and           

𝛕𝑗
∗ -open in X respectively. Since A and B are             

*-separated in X, then A and B are nonempty and 

disjoint. Thus, Y is not pairwise *-connected. This is a 

contradiction.  

 

Theorem 3.5.  Let (X, τ1, τ2, I) be an ideal 

bitopological space. If A is a pairwise *s-connected set 

of X and H, G are pairwise *-separated sets of X with 

A  H  G, then either A  H or A  G. {i , j = 1 , 2;  

i ≠ j} 

Proof: Let A  H  G. Since A = (A  H)  (A  G), 

then (A  G)  𝛕𝒊Cl
*
(A  H)  G  Cl

*
(H) = ∅. By 

similar reasoning, we have (A  H)  𝛕𝒋Cl(A  G)  

H  Cl
*
(G) = ∅. Suppose that A  H and A  G are 

nonempty. Then A is not pairwise *s-connected. This 

is a contradiction. Thus, either A  H = ∅ or A  G = 

∅ This implies that A  H or A  G 

 

Theorem 3.6.  If A is a pairwise *s-connected set of an 

ideal bitopological space (X, τ1, τ2, I) and  
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A  B  𝛕𝐢Cl
*
 (A )  𝛕𝐣Cl(B) then B is pairwise       

*s-connected {i , j = 1 , 2;  i ≠ j}. 

Proof:  Suppose B is not pairwise *s-connected. There 

exist pairwise *-separated sets H and G of X such that 

B = H  G. This implies that H and G are nonempty 

and 𝛕𝐢Cl*(H)  G = H  𝛕𝐣Cl(G) = . By Theorem 

3.5, we have either A  H or A  G.  Suppose that A 

 H. Then Cl
*
(A)  Cl

*
(H) and G  Cl

*
(A) =   This 

implies that G  B  Cl
*
 (A) and G = Cl

*
 (A)  G = . 

Thus, G is an empty set for if G is nonempty, this is a 

contradiction. Suppose that A  G. By similar way, it 

follows that H is empty. This is a contradiction. Hence, 

B is pairwise *s-connected. 

 

Corollary 3.1. If A is a pairwise*s-connected set in an 

ideal bitopological space (X, τ1, τ2, I) ) then 𝛕𝐢Cl
*
 (A) 

is pairwise *s-connected. 

 

Theorem 3.7. If {Mi : i  N} is a nonempty family of  

pairwise *s-connected sets of an ideal space 

(X, τ1, τ2, I) with   Mi iI
  

 ≠  Then  MiiI
    is pairwise 

*s-connected. 

Proof: Suppose that  MiiI
    is not pairwise                

*s-connected. Then we have  MiiI
   = H  G, where H 

and G are pairwise *-separated sets in X. Since 

 Mi iI
  ≠   we have a point x   in  Mi iI

   

Since x  MiiI
  

, either x ε H or x ε G. Suppose that x ε 

H. Since x ε Mi for each i ε N, then Mi and H intersect 

for each i ε N.  By theorem 3.5; Mi  H or Mi  G. 

Since H and G are disjoint, Mi   H for all i ε Z and 

hence MiiI
  

  H. This implies that G is empty. This is 

a contradiction. Suppose that x ε G. By similar way, 

we have that H is empty. This is a contradiction. Thus, 

MiiI
  

  is pairwise *s-connected. 

 

Theorem 3.8. Suppose that {Mn:  n ε N} is an infinite 

sequence of pairwise *-connected open sets of an ideal 

space (X, τ1, τ2, I) and Mn  Mn+1 ≠   for each n ε N. 

Then  MiiI
     is pairwise*connected. 

Proof: By induction and Theorems 3.4 and 3.7, the set 

Nn = Mkk ≤ n
    

  is a pairwise *-connected open set for 

each n ε N. Also, Nn have a nonempty intersection. 

Thus, by Theorems 13 and 17,  Mn nN
  is pairwise      

*-connected 

 

Definition 3.6.  Let X be an ideal bitopological space 

(X, τ1, τ2, I) and x  X. The union of all pairwise      

*s-connected subsets of X containing x is called the 

pairwise *-component of X containing x. 

 

Theorem 3.9. Each pairwise *-component of an ideal 

bitopological space (X, τ1, τ2, I) is a maximal 

pairwise *s connected set of X. 

 

Theorem 3.10. The set of all distinct pairwise            

*-components of an ideal bitopological space            

(X, τ1, τ2, I) forms a partition of X 

Proof:  Let A and B be two distinct pairwise              

*-components of X. Suppose that A and B intersect. 

Then, by Theorem 3.7, A  B is pairwise *s-connected 

in X. Since A  A  B, then A is not maximal. Thus, 

A and B are disjoint. 

 

Theorem 3.11. Each pairwise*-component of an ideal 

bitopological space (X, τ1, τ2, I) is pairwise *-closed 

in X. 

Proof:  Let A be a pairwise *-component of X. By 

Corollary 3.1, 𝛕𝐢Cl
*
 (A) is pairwise*s-connected and  

A = 𝛕𝐢Cl
*
 (A). Thus, A is pairwise *-closed in X. 
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